PRODUCT CLASSIFICATION
產品分類1.本區地質條件
本次抗旱擬打井位置大部分地段位于元古代、中生代侵入巖分布區和膠南群、泰山群變質巖分布區,只有少部分地段位于中生代碎屑巖分布區(俗稱“紅層”),地勢高低起伏,地形地貌以丘陵為主,水文地質條件非常復雜,屬于資源性貧水區,給找水定井帶來較大的困難。根據實際地質條件,可以將本次找水蓄水構造分為以下兩類:即碎屑巖類孔隙裂隙水蓄水構造,變質巖-巖漿巖類裂隙水蓄水構造。
1.1碎屑巖類孔隙裂隙水蓄水構造
工作區白堊系“紅層”區的棕紅色泥巖、頁巖、砂巖、砂礫巖,總體上看含水微弱,但在地形條件有利于匯水,砂礫巖埋藏淺的構造破碎帶附近,其富水性較好。尋找“紅層”碎屑巖孔隙裂隙水就是尋找靠近斷裂的砂礫巖埋藏較淺的構造破碎帶,或者尋找碎屑巖孔隙、裂隙的地下水的強徑流帶附近地段。
莒南縣筵賓鎮前泉龍抗旱井,編號371327177J。地質條件:該村西側約5km處為北東向昌邑大店斷帶裂,東側3km處為北西走向次級斷裂。地表出露地層為白堊系王氏組二段,目的含水層為礫巖、砂巖。砂巖為脆性巖石,我們定井有利地段就是構造裂隙發育附近,或者斷裂的影響帶,即地下水的強徑流帶上,其蓄水構造概念模型見圖1-1。經過物探資料分析,井位確定在村北方向。
成井情況:該井深度216m,靜水位埋深9.6m,降深為60.2m,單井涌水量為240m3/d。
1.2變質巖-巖漿巖類裂隙水蓄水構造
有一定補給來源的地下水再向地勢低洼處地下徑流時,遇到阻水構造,即地層阻水或者斷層阻水,在阻水地層或阻水構造上游附近為地下承壓水的滯留帶,該地帶一般為定井理想地帶。
莒南縣相邸鎮杜家嶺抗旱井,編號371327172J。地質條件:根據調查,該村地勢較高,地貌類型為丘陵殘丘。該村西側為北東向的壓扭性斷帶裂,斷裂西側為下元古代膠南群大山溝組上段,巖性為二長淺粒巖與黑云二長片麻巖及角閃二長片麻巖互層,偶夾大理巖。斷裂東側為中生代燕山期艾山階段侵入巖,巖性為石英二長巖,屬于地下水貧水區。為解決1720人吃水問題,定井風險極大。經綜合分析:村西部地勢低洼,南部有一定補給來源(匯水面積),東側為阻水斷裂構造,故在阻水斷裂構造上游附近為地下承壓水的滯留帶,該地帶一般為定井理想地帶。在該理論指導下故定井于此。其概念模型見圖1-2。
成井情況:該井深度150.6m,靜水位埋深5.19m,降深為68.6m,涌水量為120m3/d。
1.3找水定井的技術方法
基巖地下水富集一般要具備三個條件:其一是補給面積(地表匯水面積);其二是導水通道(斷裂構造帶或裂隙巖溶發育帶);其三是儲水空間(裂隙發育的碎屑巖類,如粗砂巖、砂礫巖、礫巖等,巖漿巖類的成巖、裂隙、孔洞等)。具備這三個條件是基巖地下水富集的必要條件,但不是充分條件,要想找到相對豐富的地下水源地,還要充分考慮區域地下水的補給、徑流、排泄、蓄積、溢出等關鍵環節,經綜合分析對比,尋找確定有利于地下水富集的基巖蓄水構造的空間展布范圍,在基巖蓄水構造空間展布范圍內的位置就是將要定井的有利位置。
1.3.1基巖蓄水構造的勘察的技術路線
①在對區域地質、地質構造、水文地質調查與綜合分析研究的基礎上,重點查明擬定井場區的地質構造條件,地層結構條件,地下水天然露頭(泉水出露)情況及已有水井的水位、水溫、水質等情況。
②有的放矢的針對貧水地區的白堊系俗稱“紅層”,粗砂巖及礫巖,進行水文物探工作,探測砂礫巖含水層頂板埋藏起伏及斷裂構造發育情況等。
③通過野外水文地質調查、水文物探等工作,結合貧水地區已有的找水工作經驗,進行綜合分析對比,并研究貧水區區域地下水的溫度場、水文地球化學場、地下水的動力流場等微觀變化,找出地下水補給來源、徑流途徑、蓄積部位、排泄方式(泉排泄、暗河排泄、潛流排泄等)等。
④ 建立基巖蓄水構造概念模型,初步分析確定地下水賦存的基本規律。推測含水層埋深,確定井深,評估打井施工風險,估算單井涌水量等。寫出探采結合井井位專家論證意見報告。
⑤ 論證報告通過邀請相關找水專家評審認為工作區確實具備施工探采結合井的可行性,并由專家現場確定施工井井位,方可進行探采結合井施工。
1.3.2基巖蓄水構造的取水設計
碎屑巖類孔隙裂隙水蓄水構造取水設計:
目標含水層為斷裂構造的影響帶附近的砂巖、礫巖,或者地下水強徑流帶附近的砂礫巖。宜井類型為鉆孔。宜井深度一般為200-300m。
變質巖、巖漿巖類裂隙水蓄水構造取水設計:
目標含水層為斷裂構造的影響帶及風化帶。宜井類型為鉆孔或大口井。宜井深:大口井深度一般為20-50m,鉆孔深度一般100-200m。
2.本次工作發現的相對富水地段
通過本次抗旱鉆探成井、抽水試驗,綜合分析研究認為:發現莒南縣存現兩處地下水相對富水地段,分別為小官莊~石蓮子富水地段和山底~河西富水地段,現敘述如下:
3.1 小官莊~石蓮子富水地段
該富水地段位于汀水鎮的小官莊~石蓮子鎮,呈近南北向的不規則橢圓狀,面積約0.7km2,該地段整體地勢平坦,微向南傾斜。該區有近南北向斷裂通過,斷裂西側,出露地層為元古代膠南群角閃片麻巖,受斷裂構造影響,200m以淺裂隙較發育,風化孔隙及構造裂隙為地下水運移提供了空間,風化帶及構造裂隙帶為地下水的含水層。如石蓮子抗旱井,編號371327176J,深度為183m,靜水位埋深6.59m,水位降深為49.1m,單井涌水量為240m3/d,地下水水化學類型為HCO3--Ca·Mg型水,H2SiO3含量為40.56mg/l,礦化度為0.37mg/l,水質達到飲用礦泉水國家標準。斷裂帶東側,地表出露地層為白堊系,巖性為砂巖、礫巖及泥巖,白堊系以下為埋藏型奧陶系灰巖,受斷裂帶的影響,巖溶地下水經過深循環后由北向南方向徑流,斷裂東側150m寬度范圍內為巖溶地下水的相對富水區,灰巖頂板一般埋藏于300-500m。如汀水鎮小官莊地震觀測井,編號魯14#,奧灰頂板埋深270m,靜水位高處地面6m。
3.2山底~河西富水地段
該富水地段位于莒南縣坪上鎮(現稱臨沂市臨港區)的山底村~河西村(朱蘆鎮),呈近東西向的不規則體,面積約17.3km2,該地段北部高南部低,主要為山間洼地兩側地段。該區南部有近東西向斷裂通過,該斷裂為一阻水構造,斷裂北部地勢較高,有較大范圍的匯水面積,受阻水斷裂的阻擋,在斷裂北部形成相對富水地段。該富水地段出露為燕山期斑狀中粒角閃石英二長巖。受斷裂構造影響,200m以淺裂隙較發育,風化孔隙及構造裂隙為地下水運移提供了空間,風化帶及構造裂隙帶為地下水的含水層。如山底抗旱井,編號371327191J,深度為100m,靜水位埋深6.59m,水位降深為49.1m,單井涌水量為240m3/d,地下水水化學類型為HCO3--Ca·Mg型水,H2SiO3含量為40.56mg/l,礦化度為0.37mg/l,水質達到飲用礦泉水國家標準。如河西抗旱井,編號371327193J,深度為183m,靜水位埋深6.59m,水位降深為49.1m,單井涌水量為240m3/d,地下水水化學類型為HCO3--Ca·Mg型水,H2SiO3含量為40.56mg/l,礦化度為0.37mg/l,水質達到飲用礦泉水國家標準。
TD-016C型 RS485豎直地埋管地源熱泵溫度監測系統
產品關鍵詞:地源熱泵測溫,地埋管測溫
此款系統專門為地源熱泵生產企業,新能源技術安裝公司,地熱井鉆探公司以及節能環保產業等單位設計,通過連接我司單總線地熱電纜,以及單通道或多通道485接口采集器,可對接到貴司單位的軟件系統。歡迎各類單位以及經銷商詳詢!此款設備支持貼牌,具體價格按量定制。
RS485豎直地埋管地源熱泵溫度監測系統【產品介紹】
地源熱泵空調系統利用土壤作為埋地管換熱器的熱源或熱匯,對建筑物進行供熱和供冷.在埋地管換熱器設計中,土壤的導熱系數是很重要的參數.而對地溫進行長期可靠的監測顯得特別重要。在現場實測土壤導熱系數時測試時間要足夠長,測試時工況穩定后的流體進出口及不同深度的溫度會影響測試結果的準確性。因此地埋測溫電纜的設計顯得尤其重點。較傳統的測溫電纜設計方法,單總線測溫電纜因為接線方便、精度高且不受環境影響、性價比高等優點,目前已廣泛應用于地埋管及地源熱泵系統進行地溫監測,因可靠性和穩定性在諸多工程中已得到了驗證并取得了較好的口啤。
采集服務器通過總線將現場與溫度采集模塊相連,溫度采集模塊通過單總線將各溫度傳感器采集到的數據發到總線上。每個采集模塊可以連接內置1-60個溫度傳感器的測溫電纜相連。 本方案可以對大型試驗場進行溫度實時監測,支持180口井或測溫電纜及1500點以上的觀測井溫度在線監測。
RS485豎直地埋管地源熱泵溫度監測系統:
1. 地埋管回填材料與地源熱泵地下溫度場的測試分析
2. U型垂直埋管換熱器管群間熱干擾的研究
3. U型管地源熱泵系統性能及地下溫度場的研究
4. 地源熱泵地埋管的傳熱性能實驗研究
5. 地源熱泵地埋管換熱器傳熱研究
6. 埋地換熱器含水層內傳熱的數值模擬與實驗研究,埋地換熱器含水層內傳熱的數值模擬與實驗研究。
豎直地埋管地源熱泵溫度測量系統,主要是一套先進的基于現場總線和數字傳感器技術的在線監測及分析系統。它能有對地源熱泵換熱井進行實時溫度監測并保存數據,為優化地源熱泵設計、探討地源熱泵的可持續運行具有參考價值。
二、RS485豎直地埋管地源熱泵溫度監測系統本系統的重要特點:
1.結構簡單,一根總線可以掛接1-60根傳感器,總線采用三線制,所有的傳感器就燈泡一樣,可以直接掛在總線上.
2.總線距離長.采用強驅動模塊,普通線,可以輕松測量500米深井.
3.的深井土壤檢測傳感器,防護等級達到IP68,可耐壓力高達5Mpa.
4.定制的防水抗拉電纜,增強了系統的穩定性和可靠特點總結:高性價格比,根據不同的需求,比你想象的*.
針對U型管口徑小的問題,本系統是傳統鉑電阻測溫系統理想的替代品. 可應用于:
1.地埋管回填材料與地源熱泵地下溫度場的測試分析
2.U型垂直埋管換熱器管群間熱干擾的研究
3. U型管地源熱泵系統性能及地下溫度場的研究
4. 地源熱泵地埋管的傳熱性能實驗研究
5. 地源熱泵地埋管換熱器傳熱研究
6. 埋地換熱器含水層內傳熱的數值模擬與實驗研究。
本系統技術參數:支持傳感器:18B20高精度深井水溫數字傳感器,測井深:1000米,傳感器耐壓能力:5Mpa ,配置設備:遠距離溫度采集模塊+測井電纜+傳感器,
RS485豎直地埋管地源熱泵溫度監測系統系統功能:
1、溫度在線監測
2、 報警功能
3、 數據存儲
4、定時保存設置
5、歷史數據報表打印
6、歷史曲線查詢等功能。
【技術參數】
1、溫度測量范圍:-10℃ ~ +100℃
2、溫度精度: 正負0.5℃ (-10℃ ~ +80℃)
3、分 辨 率: 0.1℃
4、采樣點數: 小于128
5、巡檢周期: 小于3s(可設置)
6、傳輸技術: RS485、RF(射頻技術)、GPRS
7、測點線長: 小于350米
8、供電方式: AC220V /內置鋰電池可供電1-3年
9、工作溫度: -30℃ ~ +80℃
10、工作濕度: 小于90%RH
11、電纜防護等級:IP66
使用注意事項:
防水感溫電纜經測試與檢測,具備一定的防水和耐水壓能力,使用時,請按以下方法操作與使用:
1. 使用時,建議將感溫電纜置于U形管內以方便后期維護。
若置與U形管外,請小心操作,做好電纜防護,防止在安裝過程中電纜被劃傷,以保持電纜的耐水壓能力和使用壽命。
2. 電纜中不銹鋼體為傳感器所在位置,因溫度為緩慢變化量,正常使用時,請等待測物熱平衡后再進行測量。
3. 電纜采用三線制總線方式,紅色為電源正,建議電源為3-5V DC,黑色為電源負,蘭色為信號線。請嚴格按照此說明接線操作。
4. 系統理論上支持180個節點,實際使用應該限制在150個節點以內。
5.系統具備一定的糾錯能力,但總線不能短路。
6. 系統供電,當總線距離在200米以內,則可以采用DC9V給現場模塊供電,當距離在500米之內,可以采用DC12V給系統供電。
【北京鴻鷗成運儀器設備有限公司提供定制各個領域用的測溫線纜產品介紹】
地源熱泵空調系統利用土壤作為埋地管換熱器的熱源或熱匯,對建筑物進行供熱和供冷.在埋地管換熱器設計中,土壤的導熱系數是很重要的參數.而對地溫進行長期可靠的監測顯得特別重要。在現場實測土壤導熱系數時測試時間要足夠長,測試時工況穩定后的流體進出口及不同深度的溫度會影響測試結果的準確性。因此地埋測溫電纜的設計顯得尤其重點。
由北京鴻鷗成運儀器設備有限公司推出的地源熱泵溫度場測控系統,硬件采取先進的ARM技術;上位機軟件使用編程語言技術設計,富有人性、直觀明了;測溫傳感器直接封裝在電纜內部,根據客戶距離進行封裝。目前該系統廣泛應用于地源熱泵地埋管、地源熱泵溫度場檢測、地源熱泵地埋換熱井、地源熱泵豎井及地源熱泵溫度場系統進行地溫監測,本系統的可靠性和穩定性在諸多工程中已得到了驗證并取得了較好的口啤。
地源熱泵診斷中土壤溫度的監測方法:
為了實現地源熱泵系統的診斷,必須首先制定保證系統正常運行的合理的標準。在系統的設計階段,地下土壤溫度的初始值是一個重要的依據參數,它也是在系統運行過程中可能產生變化的參數。如果在一個或幾個空調采暖周期(一般一個空調采暖周期為1年)后,系統的取熱和放熱嚴重不平衡,則這個初始溫度會有較大的變化,將會大大降低系統的運行效率。所以設計選用土壤溫度變化曲線作為診斷系統是否正常的標準。
首先對地源熱泵系統所控制的建筑物進行全年動態能耗分析,即輸入建筑物的條件,包括建筑的地理位置、朝向、外形尺寸、圍護結構材料和房間功能等條件,計算出該區域全年供暖、制冷的負荷,我們根據該負荷,選擇合適的系統配置,即地埋管數量以及必要的輔助冷熱源,并動態模擬計算地源熱泵植筋加固系統運行過程中土壤溫度的變化情況,得到初始土壤溫度標準曲線。采用滿足土壤溫度基本平衡要求的運行方案運行,同時系統實時監測土壤溫度變化情況,即依靠埋置在地下的測溫傳感器監測土壤的溫度,并且將測得的溫度傳遞給地源熱泵系統。
淺層地溫能監測系統概況:
地源熱泵空調系統利用土壤作為埋地管換熱器的熱源或熱匯,對建筑物進行供熱和供冷,在埋地管換熱器設計中,土壤的導熱系數是很重要的參數,而對地溫進行長期可靠的監測顯得特別重要。在現場實測土壤導熱系數時測試時間要足夠長,測試時工況穩定后的流體進出口及不同深度的溫度會影響測試結果的準確性。因此地源熱泵地埋測溫電纜的設計顯得尤其重點。較傳統的地源熱泵測溫電纜設計方法,北京鴻鷗成運儀器設備有限公司研發的數字總線式測溫電纜因為接線方便、精度高且不受環境影響、性價比高等優點,目前已廣泛應用于地埋管及地源熱泵系統進行地溫監測,因可靠性和穩定性在諸多工程中已得到了驗證并取得了較好的口啤。
為方便研究土壤、水質等環境對空調換熱井能效等方面的可靠研究或溫度測量,目前地源熱泵地埋管測溫電纜對于地埋換熱井,有口徑小,深度較深等特點的測溫方式,如果測量地下120米的地源熱泵井,要放12路線PT100傳感器。12根測溫線纜若平均放置,即10米放一個探頭,則所需線材要1500米,在井上需配置一個至少12通道的巡檢儀,若需接入電腦進行溫度實時記錄,該巡檢儀要有RS232或RS485功能,根據以上成本估計,這口井進行地熱測溫至少成本在8000元,雖然選擇高精度的PT100可提高系統的測溫精度,但對模擬量數據采集,提供精度的有效辦法是提供儀器的AD轉換器的位數,即提供巡檢儀的測量精度,若能夠在長距離測溫的條件下進行多點測溫,能夠做到0.5度的精度,則是非常不容易。針對這一需求,北京鴻鷗成運儀器設備有限公司推出“數字總線式地源熱泵地埋管測溫電纜”及相應系統。礦井深部地溫監測,地源熱泵溫度監測研究,地源熱泵溫度測量系統,淺層地熱測溫系統。
地源熱泵數字總線測溫線纜與傳統測溫電纜對比分析:
傳統的溫度檢測以熱敏電阻、PT100或PT1000作為溫度敏感元件,因其是模擬量,要對溫度進行采集,若需較高精度,需要選擇12位或以上的AD轉換及信號處理電路,近距離時,其精度及可靠性受環境影響不大,但當大于30米距離傳輸時,宜采用三線制測方式,并需定期對溫度進行校正。當進行多點采集時,需每個測溫點放置一根電纜,因電阻作為模擬量及相互之間的干擾,其溫度測量的準確度、系統的精度差,會受環境及時間的影響較大。模塊量傳感器在工作過程中都是以模擬信號的形式存在,而檢測的環境往往存在電場、磁場等不確定因素,這些因素會對電信號產生較大的干擾,從而影響傳感器實際的測量精度和系統的穩定性,每年需要進行校準,因而它們的使用有很大的局限性。
北京鴻鷗成運儀器設備有限公司研發的總線式數字溫度傳感器,具有防水、防腐蝕、抗拉、耐磨的特性,總線式數字溫度傳感器采用測溫芯片作為感應元件,感應元件位于傳感器頭部,傳感器的精度和穩定性決定于美國進口測溫芯片的特性及精度級別,無需校正,因數據傳輸采用總線方式,總線電纜或傳感器外徑可做得很小,直徑不大于12mm,且線路長短不會對傳感器精度造成任何影響。這是傳統熱電阻測溫系統*的優勢。所以數字總線式測溫電纜是地源熱泵地埋管管測溫、地溫能深井和地層溫度監測理想的設備。數字總線式數據傳感器本身自帶12位高精度數據轉換器和現場總線管理器,直接將溫度數據轉換成適合遠距離傳輸的數字信號,而每個傳感器本身都有唯的識別ID,所以很多傳感器可以直接掛接在總線上,從而實現一根電纜檢測很多溫度點的功能。
地源熱泵大數據監控平臺建設
一、系統介紹
1、建設自動監測監測平臺,可監測大樓內室內溫度;熱泵機組空調側和地源側溫度、
壓力、流量;系統空調側和地源側溫度、壓力、流量;熱泵機組和水泵的電壓、電流、功率、
電量等參數;地溫場的變化等,實現熱泵機組運行情況 24 小時實時監測,異常情況預
警,做到真正的無人值守。可對熱泵系統的長期運行穩定性、系統對地溫場的影響以及能效
比等進行綜合的科學評價,為進一步示范推廣與系統優化的工作提供數據指導依據。
具體測量要求如下:
1)各熱泵機組實時運行情況;
2)室內溫度監測數據及變化曲線;
3)室外環境溫度數據及變化曲線;
4)機房內空調側出回水溫度、壓力、流量等監測數據及變化曲線;
5)機房內地埋管側出回水溫度、壓力、流量等監測數據及變化曲線;
6)機房內用電設備的電流、電壓、功率、電能等監測數據及變化曲線;
7)地溫場內不同深度的地溫監測數據及變化曲線;
8)能耗綜合分析、系統 COP 分析以及系統節能量的評價分析。
2、自動監測平臺建成以后可以對已經安裝自動監測設備的地熱井實施自動監測的數據分
析展示,可實現地熱井和回灌井的水位、水溫、流量實施傳輸分析,并可實現數據異常情況預
警,做到實時監管,有地熱井運行的穩定性。
1)開采水量及回水水量的流量監測及變化曲線;
2)開采水溫及回水水溫的溫度監測及變化曲線;
3)開采井井內水位監測及變化曲線;
地源熱泵溫度監控系統/地源熱泵測溫/多功能鉆孔成像分析儀/井下電視/鉆孔成像儀/地熱井鉆孔成像儀/井下鉆孔成像儀/數字超聲成像測井系統/多功能超聲成像測井系統/超聲成像測井系統/超聲成像測井儀/成像測井系統/多功能井下超聲成像測井儀/超聲成象測井資料分析系統/超聲成像
關鍵詞:地熱水資源動態監測系統/地熱井監測系統/地熱井監測/水資源監測系統/地熱資源回灌遠程監測系統/地熱管理系統/地熱資源開采遠程監測系統/地熱資源監測系統/地熱管理遠程系統/地熱井自動化遠程監控/地熱資源開發利用監測軟件系統/地熱水自動化監測系統/城市供熱管網無線監測系統/供暖換熱站在線遠程監控系統方案/換熱站遠程監控系統方案/干熱巖溫度監測/干熱巖監測/干熱巖發電/干熱巖地溫監測統/地源熱泵自動控制/地源熱泵溫度監控系統/地源熱泵溫度傳感器/地源熱泵中央空調中溫度傳感器/地源熱泵遠程監測系統/地源熱泵自控系統/地源熱泵自動監控系統/節能減排自動化系統/無人值守地源熱泵自控系統/地熱遠程監測系統
地熱管理系統(geothermal management system)是為實現地熱資源的可持續開發而建立的管理系統。
我司深井地熱監測產品系列介紹:
1.0-1000米單點溫度檢測(普通表和存儲表)/0-3000米單點溫度檢測(普通顯示,只能顯示溫度,沒有存儲分析軟件功能)
2.0-1000米淺層地溫能監測(采集器采用低功耗、攜帶方便;物聯網NB無線傳輸至WEB端B/S架構網絡;單總線結構,可擴展256個點;進口18B20高精度傳感器,在10-85度范圍內,精度在0.1-0.2度)
3. 4.0-10000米分布式多點深層地溫監測(采用分布式光纖測溫系統細分兩大類:1.井筒測試 2.井壁測試)
4.0-2000米NB型液位/溫度一體式自動監測系統(同時監測溫度和液位兩個參數,MAX耐溫125攝氏度)
5.0-7000米全景型耐高溫測溫成像一體井下電視(同時監測溫度和視頻圖片等)
6. 微功耗采集系統/遙控終端機——地熱資源監測系統/地熱管理系統(可在換熱站同時監測溫度/流量/水位/泵內溫度/壓力/能耗等多參數內容,可實現物聯網遠程監控,24小時無人值守)
有此類深井地溫項目,歡迎新老客戶朋友垂詢!北京鴻鷗成運儀器設備有限公司
關鍵詞:地熱井分布式光纖測溫監測系統/分布式光纖測溫系統/深井測溫儀/深水測溫儀/地溫監測系統/深井地溫監測系統/地熱井井壁分布式光纖測溫方案/光纖測溫系統/深孔分布式光纖溫度監測系統/深井探測儀/測井儀/水位監測/水位動態監測/地下水動態監測/地熱井動態監測/高溫水位監測/水資源實時在線監控系統/水資源實時監控系統軟件/水資源實時監控/高溫液位監測/壓力式高溫地熱地下水水位計/溫泉液位測量/涌井液位測量監測/高溫涌井監測水位計方案/地熱井水溫水位測量監測系統/地下溫泉怎么監測水位/ 深井水位計/投入式液位變送器 /進口擴散硅/差壓變送器